Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.403
Filtrar
1.
Updates Surg ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575804

RESUMO

Video-assisted thoracic surgery (VATS) has been widely used in lung cancer treatment. However, VATS left upper lobectomy (LUL) is complex due to the intricate branching pattern of the left pulmonary artery (PA). Nevertheless, VATS right upper lobectomy can be simplified through a bronchus-first and simultaneous vessel stapling technique. In this study, the learning curve was obtained while ensuring favorable oncological outcomes using bronchus-first method for VATS LUL. First, retrospective data of 148 consecutive patients who underwent VATS LUL (bronchus-first method) for non-small cell lung cancer (NSCLC) from March 2018 to October 2020 were analyzed. The learning curve was then assessed via cumulative sum (CUSUM) analysis. Moreover, data at different stages of the learning curve, including operation time, blood loss, postoperative hospital stay, lymph node harvested, thoracotomy conversion, postoperative complications, endoscopic stapler consumptions, and 3 year overall survival, were recorded. The learning curve was best modeled as the equation: y = - 7.78 + 2.05x-2.23 × 10-2x2 + 6.43 × 10-5x3, with a good-to-fit test R2 = 0.97. The surgeon entered the proficient stage (59th case-148th case) after consecutive operations of 58 cases (learning stage, 1st case-58th case). Notably, more lymph nodes were harvested in the proficient stage than in the learning stage (17.69 ± 1.47 vs. 15.53 ± 1.43, P < 0.01). Compared with the learning stage, the proficient stage was associated with shorter operation time (114.28 ± 8.56 min vs. 126.81 ± 7.30 min, P < 0.01), fewer blood loss (44.22 ± 7.75 mL vs. 57.41 ± 22.98 mL, P < 0.01), shorter postoperative hospital stay (6.02 ± 0.99 d vs. 7.22 ± 1.34 d, P < 0.01), and fewer endoscopic stapler consumptions (5.89 ± 0.64 vs. 6.53 ± 0.50, P < 0.01). However, thoracotomy conversion (4/90 vs. 5/58, P = 0.32), postoperative complications (10/90 vs. 11/58, P = 0.23) and 3 year overall survival (62.2% vs. 50.8%, log-rank test, P = 0.11) showed no significant difference between the two stages. The surgeon with former single-direction VATS lobectomy experience can master bronchus-first VATS LUL after attending to 58 cases.

2.
Heliyon ; 10(7): e28953, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38596129

RESUMO

Ecological fishery management requires high-precision fishery information to support resource management and marine spatial planning. In this paper, the Automatic Identification System (AIS) was adopted to extract the spatial information on the fishing grounds of light purse seine vessels in the Northwest Pacific Ocean. The spatial distributions of fishing grounds mapped by the data mining, kernel density analysis and hotspot analysis methods were compared. The spatial similarity index was applied to determine the spatial consistency between the computed spatial information and fisheries resource information. Finally, the spatial information derived by the best method was used to investigate the characteristics of fishing activity. The results showed that: the speed of light purse seine vessels related to operations was lower than 1.6 knots. The spatial information extracted by the three methods was consistent with the catch data distribution, and the spatial similarity between the fishing effort and catch data was the highest. The spatial variation in fishing activity was similar to that in the chub mackerel migration route. AIS data could be used to provide high-resolution fishery information. Light purse seine fishing vessels typically operate and travel along the exclusive economic zone boundary, and increased attention must be given to fishing vessel operation supervision. A comprehensive supervision system can be employed to monitor the operations of fishing vessels more effectively. The results of this study can provide technical support for the management of fishing activities and conservation of marine resources in this region using AIS data.

3.
Mol Divers ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598164

RESUMO

Cancer poses a significant global health challenge and significantly contributes to mortality. NEK7, related to the NIMA protein kinase family, plays a crucial role in spindle assembly and cell division. The dysregulation of NEK7 is closely linked to the onset and progression of various cancers, especially colon and breast cancer, making it a promising target for cancer therapy. Nevertheless, the shortage of high-quality NEK7 inhibitors highlights the need for new therapeutic strategies. In this study, we utilized a multidisciplinary approach, including virtual screening, molecular docking, pharmacokinetics, molecular dynamics simulations (MDs), and MM/PBSA calculations, to evaluate natural compounds as NEK7 inhibitors comprehensively. Through various docking strategies, we identified three natural compounds: (-)-balanol, digallic acid, and scutellarin. Molecular docking revealed significant interactions at residues such as GLU112 and ALA114, with docking scores of -15.054, -13.059, and -11.547 kcal/mol, respectively, highlighting their potential as NEK7 inhibitors. MDs confirmed the stability of these compounds at the NEK7-binding site. Hydrogen bond analysis during simulations revealed consistent interactions, supporting their strong binding capacity. MM/PBSA analysis identified other crucial amino acids contributing to binding affinity, including ILE20, VAL28, ILE75, LEU93, ALA94, LYS143, PHE148, LEU160, and THR161, crucial for stabilizing the complex. This research demonstrated that these compounds exceeded dabrafenib in binding energy, according to MM/PBSA calculations, underscoring their effectiveness as NEK7 inhibitors. ADME/T predictions showed lower oral toxicity for these compounds, suggesting their potential for further development. This study highlights the promise of these natural compounds as bases for creating more potent derivatives with significant biological activities, paving the way for future experimental validation.

4.
Neuroradiology ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625617

RESUMO

PURPOSE: The first-pass effect (FPE), defined as complete revascularization after a single thrombectomy pass in large vessel occlusion, is a predictor of good prognosis in patients with acute ischemic stroke (AIS) receiving mechanical thrombectomy (MT). We aimed to evaluate obesity-related indicators if possible be predictors of FPE. METHODS: We consecutively enrolled patients with AIS who were treated with MT between January 2019 and December 2021 at our institution. Baseline characteristics, procedure-related data, and laboratory test results were retrospectively analyzed. A multivariable logistic regression analysis was performed to evaluate the independent predictors of FPE. RESULTS: A total of 151 patients were included in this study, of whom 47 (31.1%) had FPE. After adjusting for confounding factors, the independent predictors of achieving FPE were low levels of body mass index (BMI) (OR 0.85, 95% CI 0.748 to 0.971), non-intracranial atherosclerotic stenosis (OR 4.038, 95% CI 1.46 to 11.14), and non-internal carotid artery occlusion (OR 13.14, 95% CI 2.394 to 72.11). Patients with lower total cholesterol (TC) (< 3.11 mmol/L) were more likely to develop FPE than those with higher TC (≥ 4.63 mmol/L) (OR 4.280; 95% CI 1.24 to 14.74) CONCLUSION: Lower BMI, non-intracranial atherosclerotic stenosis, non-internal carotid artery occlusion, and lower TC levels were independently associated with increased rates of FPE in patients with AIS who received MT therapy. FPE was correlated with better clinical outcomes after MT.

5.
Pestic Biochem Physiol ; 200: 105831, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582594

RESUMO

Paraquat (PQ) causes fatal poisoning that leads to systemic multiple organ fibrosis, and transforming growth factor (TGF)-ß1 plays a critical role in this process. In this study, we aimed to investigate the effects of AZ12601011 (a small molecular inhibitor of TGFßRI) on PQ-induced multiple organ fibrosis. We established a mouse model of PQ in vivo and used PQ-treated lung epithelial cell (A549) and renal tubular epithelial cells (TECs) in vitro. Haematoxylin-eosin and Masson staining revealed that AZ12601011 ameliorated pulmonary, hepatic, and renal fibrosis, consistent with the decrease in the levels of fibrotic indicators, alpha-smooth muscle actin (α-SMA) and collagen-1, in the lungs and kidneys of PQ-treated mice. In vitro data showed that AZ12601011 suppressed the induction of α-SMA and collagen-1 in PQ-treated A549 cells and TECs. In addition, AZ12601011 inhibited the release of inflammatory factors, interleukin (IL)-1ß, IL-6, and tumour necrosis factor-α. Mechanistically, TGF-ß and TGFßRI levels were significantly upregulated in the lungs and kidneys of PQ-treated mice. Cellular thermal shift assay and western blotting revealed that AZ12601011 directly bound with TGFßRI and blocked the activation of Smad3 downstream. In conclusion, our findings revealed that AZ12601011 attenuated PQ-induced multiple organ fibrosis by blocking the TGF-ß/Smad3 signalling pathway, suggesting its potential for PQ poisoning treatment.


Assuntos
Lesão Pulmonar Aguda , Paraquat , Fibrose Pulmonar , Camundongos , Animais , Paraquat/toxicidade , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I , Fator de Crescimento Transformador beta/toxicidade , Fator de Crescimento Transformador beta1/toxicidade , Fator de Crescimento Transformador beta1/metabolismo , Colágeno/toxicidade , Colágeno/metabolismo , Fatores de Crescimento Transformadores/toxicidade
6.
Biosens Bioelectron ; 256: 116276, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38599073

RESUMO

Fat mass and obesity-associated protein (FTO) has gained attention as the first RNA N6-methyladenosine (m6A) modification eraser due to its overexpression being associated with various cancers. In this study, an electrochemiluminescence (ECL) biosensor for the detection of demethylase FTO was developed based on DNAzyme-mediated CRISPR/Cas12a signal cascade amplification system and carboxylated carbon nitride nanosheets/phosphorus-doped nitrogen-vacancy modified carbon nitride nanosheets (C-CN/PCNV) heterojunction as the emitter. The biosensor was constructed by modifying the C-CN/PCNV heterojunction and a ferrocene-tagged probe (ssDNA-Fc) on a glassy carbon electrode. The presence of FTO removes the m6A modification on the catalytic core of DNAzyme, restoring its cleavage activity and generating activator DNA. This activator DNA further activates the trans-cleavage ability of Cas12a, leading to the cleavage of the ssDNA-Fc and the recovery of the ECL signal. The C-CN/PCNV heterojunction prevents electrode passivation and improves the electron-hole recombination, resulting in significantly enhanced ECL signal. The biosensor demonstrates high sensitivity with a low detection limit of 0.63 pM in the range from 1.0 pM to 100 nM. Furthermore, the biosensor was successfully applied to detect FTO in cancer cell lysate and screen FTO inhibitors, showing great potential in early clinical diagnosis and drug discovery.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato , Técnicas Biossensoriais , Sistemas CRISPR-Cas , DNA Catalítico , Técnicas Eletroquímicas , Limite de Detecção , Medições Luminescentes , Metalocenos , Dioxigenase FTO Dependente de alfa-Cetoglutarato/química , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Humanos , DNA Catalítico/química , Técnicas Eletroquímicas/métodos , Nitrilas/química , Endodesoxirribonucleases/química , Endodesoxirribonucleases/metabolismo , Proteínas Associadas a CRISPR/química , Adenosina/análogos & derivados , Adenosina/análise , Adenosina/química , Nanoestruturas/química , Compostos Ferrosos/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética
7.
J Phys Chem B ; 128(16): 3833-3843, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38603528

RESUMO

The construction of the stratum corneum (SC) is crucial to the problems of transdermal drug delivery. SC consists of the keratinocyte layers and the lipid matrix surrounding it. Among them, the lipid matrix is the barrier for many exogenous molecules, mainly composed of ceramides (CERs), free fatty acids (FFA), and cholesterol (CHOL). In this work, we developed single-component (CERs, CER-NS, and CER-EOS) and six three-component models, and each model was simulated by using the GROMOS-54A7 force field. Short-period phase (SPP) and long-period phase (LPP) systems were established separately, and area per lipid (APL), thickness, order of carbon chain (SCD), and density distribution were analyzed. The transition of CER-NS and CER-EOS in LPP was observed. The results of hydrogen bonds in the lipid systems indicated that a strong hydrogen-bond network was formed between the skin-lipid bilayers. Umbrella sampling method simulations were performed to calculate the free energy change of ethanol moving into the skin-lipid bilayer. The results revealed that ethanol molecules pulled some water molecules into the membrane when they passed through SPP-1. Our findings provided some insights and models of the stratum corneum that could be used for the subsequent mechanism of macromolecule permeation through membranes in drugs, cosmetics, and so on.


Assuntos
Ceramidas , Bicamadas Lipídicas , Simulação de Dinâmica Molecular , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Ceramidas/química , Ceramidas/metabolismo , Ligação de Hidrogênio , Colesterol/química , Colesterol/metabolismo , Epiderme/metabolismo , Epiderme/química , Etanol/química , Ácidos Graxos não Esterificados/química , Ácidos Graxos não Esterificados/metabolismo , Pele/metabolismo , Pele/química , Humanos
8.
Int J Biol Macromol ; 267(Pt 2): 131592, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38621571

RESUMO

Nanocellulose is a kind of renewable natural polymer material with high specific surface area, high crystallinity, and strong mechanical properties. RC nanofibers (RCNFs) have attracted an increasing attention in various applications due to their high aspect ratio and good flexibility. Herein, a novel and facile strategy for RCNFs preparation with high-speed shear induced in urea solution through "bottom-up" approach was proposed in this work. Results indicated that the average diameter and yield of RCNF was approach to 136.67 nm and 53.3 %, respectively. Meanwhile, due to the regular orientation RC chains and arrangement micro-morphology, RCNFs exhibited high crystallinity, strong mechanical properties, stable thermal degradation performance, and excellent UV resistance. In this study, a novel regeneration process with high-speed shear induced was developed to produce RCNFs with excellent properties. This study paved a strategy for future low-energy production of nanofibers and high value-added conversion applications of agricultural waste.

9.
Phys Med Biol ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38636505

RESUMO

OBJECTIVE: Pharmacokinetic parametric images obtained through dynamic fluorescence molecular tomography (DFMT) has ability of capturing dynamic changes in fluorescence concentration, thereby providing three-dimensional metabolic information for applications in biological research and drug development. However, data processing of DFMT is time-consuming, involves a vast amount of data, and the problem itself is ill-posed, which significantly limits the application of pharmacokinetic parametric images reconstruction. In this study, group sparse-based Taylor expansion (GSTE) method is proposed to address these problems. APPROACH: Firstly, Taylor expansion framework is introduced to reduce time and computational cost. Secondly, group sparsity based on structural prior is introduced to improve reconstruction accuracy. Thirdly, alternating iterative solution based on accelerated gradient descent (AGD) algorithm is introduced to solve the problem. MAIN RESULTS: Numerical simulation and in vivo experimental results demonstrate that, in comparison to existing methods, the proposed approach significantly enhances reconstruction speed without a degradation of quality, particularly when confronted with background fluorescence interference from other organs. SIGNIFICANCE: Our research greatly reduces time and computational cost, providing strong support for real-time monitoring of liver metabolism.

10.
Int J Ophthalmol ; 17(4): 610-615, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638262

RESUMO

AIM: To propose an algorithm for automatic detection of diabetic retinopathy (DR) lesions based on ultra-widefield scanning laser ophthalmoscopy (SLO). METHODS: The algorithm utilized the FasterRCNN (Faster Regions with CNN features)+ResNet50 (Residua Network 50)+FPN (Feature Pyramid Networks) method for detecting hemorrhagic spots, cotton wool spots, exudates, and microaneurysms in DR ultra-widefield SLO. Subimage segmentation combined with a deeper residual network FasterRCNN+ResNet50 was employed for feature extraction to enhance intelligent learning rate. Feature fusion was carried out by the feature pyramid network FPN, which significantly improved lesion detection rates in SLO fundus images. RESULTS: By analyzing 1076 ultra-widefield SLO images provided by our hospital, with a resolution of 2600×2048 dpi, the accuracy rates for hemorrhagic spots, cotton wool spots, exudates, and microaneurysms were found to be 87.23%, 83.57%, 86.75%, and 54.94%, respectively. CONCLUSION: The proposed algorithm demonstrates intelligent detection of DR lesions in ultra-widefield SLO, providing significant advantages over traditional fundus color imaging intelligent diagnosis algorithms.

11.
GM Crops Food ; 15(1): 1-15, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38625676

RESUMO

Poplar stands as one of the primary afforestation trees globally. We successfully generated transgenic poplar trees characterized by enhanced biomass under identical nutrient conditions, through the overexpression of the pivotal nitrogen assimilation gene, pxAlaAT3. An environmental risk assessment was conducted for investigate the potential changes in rhizosphere soil associated with these overexpressing lines (OL). The results show that acid phosphatase activity was significantly altered under ammonium in OL compared to the wild-type control (WT), and a similar difference was observed for protease under nitrate. 16SrDNA sequencing indicated no significant divergence in rhizosphere soil microbial community diversity between WT and OL. Metabolomics analysis revealed that the OL caused minimal alterations in the metabolites of the rhizosphere soil, posing no potential harm to the environment. With these findings in mind, we anticipate that overexpressed plants will not adversely impact the surrounding soil environment.


Assuntos
Populus , Rizosfera , Biomassa , Endopeptidases , Nitrogênio , Populus/genética , Solo
12.
Molecules ; 29(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38611846

RESUMO

The combination of Al nanoparticles (ANPs) as fuel and H2O2 as oxidizer is a potential green space propellant. In this research, reactive force field molecular dynamics (ReaxFF-MD) simulations were used to study the influence of water addition on the combustion of Al/H2O2. The MD results showed that as the percentage of H2O increased from 0 to 30%, the number of Al-O bonds on the ANPs decreased, the number of Al-H bonds increased, and the adiabatic flame temperature of the system decreased from 4612 K to 4380 K. Since the Al-O bond is more stable, as the simulation proceeds, the number of Al-O bonds will be significantly higher than that of Al-H and Al-OH bonds, and the Al oxides (Al[O]x) will be transformed from low to high coordination. Subsequently, the combustion mechanism of the Al/H2O2/H2O system was elaborated from an atomic perspective. Both H2O2 and H2O were adsorbed and chemically activated on the surface of ANPs, resulting in molecular decomposition into free radicals, which were then captured by ANPs. H2 molecules could be released from the ANPs, while O2 could not be released through this pathway. Finally, it was found that the coverage of the oxide layer reduced the rate of H2O2 consumption and H2 production significantly, simultaneously preventing the deformation of the Al clusters' morphology.

13.
Water Res ; 255: 121486, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38564895

RESUMO

This study used a simple mechanical ball milling strategy to significantly improve the ability of Mn2O3 to activate peracetic acid (PAA) for sustainable and efficient degradation of organic micropollutant (like bisphenol A, BPA). BPA was successfully removed and detoxified via PAA activation by the bm-Mn2O3 within 30 min under neutral environment, with the BPA degradation kinetic rate improved by 3.4 times. Satisfactory BPA removal efficiency can still be achieved over a wide pH range, in actual water and after reuse of bm-Mn2O3 for four cycles. The change in hydrophilicity of Mn2O3 after ball milling evidently elevated the affinity of Mn2O3 for binding to PAA, while the reduction in particle size exposed more active sites contributing partially to catalytic oxidation. Further analysis revealed that BPA oxidation in the ball mill-treated Mn2O3 (bm-Mn2O3)/PAA process mainly depends on the bm-Mn2O3-PAA complex (i.e., Mn(III)-OO(O)CCH3) mediated non-radical pathway rather than R-O• and Mn(IV). Especially, the existence of the Mn(III)-PAA complex was definitely verified by in situ Raman spectroscopy and in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Simultaneously, density functional theory calculations determined that PAA adsorbs readily on manganese sites thereby favoring the formation of Mn(III)-OO(O)CCH3 complexes. This study advances an in-depth understanding of the underlying mechanisms involved in the manganese oxide-catalyzed activation of PAA for superior non-radical oxidation of micropollutants.

14.
Angew Chem Int Ed Engl ; : e202405427, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38603586

RESUMO

Neutral aqueous organic redox flow batteries (AORFBs) hold the potential to facilitate the transition of renewable energy sources from auxiliary to primary energy, the commercial production of anolyte materials still suffers from insufficient performance of high-concentration and the high cost of the preparation problem. To overcome these challenges, this study provides a hydrothermal synthesis methodology and introduces the charged functional groups into hydrophobic naphthalene diimide cores, and prepares a series of high-performance naphthalene diimide anolytes. Under the synergistic effect of π-π stacking and H-bonding networks, the naphthalene diimide exhibits excellent structural stability and the highest water solubility (1.85 M for dex-NDI) reported to date. By employing the hydrothermal method, low-cost naphthalene diimides are successfully synthesized on a hundred-gram scale of $0.16 g-1 ($2.43 Ah-1), which is also the lowest price reported to date. The constructed full battery achieves a high electron concentration of 2.4 M, a high capacity of 54.4 Ah L-1, and a power density of 318 mW cm-2 with no significant capacity decay observed during long-duration cycling. These findings provide crucial support for the commercialization of AORFBs and pave the way for revolutionary developments in neutral AORFBs.

15.
Artigo em Inglês | MEDLINE | ID: mdl-38606756

RESUMO

Objective: To compare clinical outcomes of superior versus inferior splenic artery embolization in partial splenic embolization (PSE) and identify predictors of major complications. Material and methods: This retrospective case-control study included 73 patients who underwent PSE between May 2005 and April 2021. They were divided into two groups: the superior and middle splenic artery embolization group (Group A, n = 37) and the inferior and middle splenic artery embolization group (Group B, n = 36). Outcome differences and major complications between the groups were assessed. Logistic regression was used to analyze potential predictors of major complications, and the optimal cutoff value for splenic embolization rates was determined using the Youden index. Results: There were no significant differences in laboratory and radiological outcomes between the two groups. Group A had a significantly lower incidence of major complications than Group B (p = 0.049), a lower Visual Analog Scale (VAS) score for pain (p = 0.036), and a shorter hospital stay (p = 0.022). Independent risk factors for major complications included inferior and middle splenic artery embolization (odds ratio [OR] = 3.672; 95% confidence interval [CI] = 1.028-13.120; p = 0.045) and a higher spleen embolization rate (OR = 1.108; 95% CI = 1.003-1.224; p = 0.044). The optimal cutoff for spleen embolization rate to predict major complications was 59.93% (sensitivity 77.8%, specificity 63.6%). Conclusion: Using 500-700 µm microspheres for PSE, targeting the middle and superior splenic artery yields similar effects to targeting the middle and inferior artery, but results in lower rates of major complications and shorter hospital stays. To effectively minimize the risk of major complications, the embolization rate should be kept below 59.93%, regardless of the target vessel.

16.
Artigo em Inglês | MEDLINE | ID: mdl-38657226

RESUMO

Graphite anode suffers from great capacity loss and larger cell polarization under low-temperature conditions in lithium-ion batteries (LIBs), which are mainly caused by the high energy barrier for the Li+ desolvation process and sluggish Li+ transfer rate across the solid electrolyte interface (SEI). Regulating an electrolyte with an anion-dominated solvation structure could synchronously stabilize the interface and boost the reaction kinetics of the graphite anode. Herein, a highly ionic conductive electrolyte consisting of a fully methylated cyclic ether solvent of 2,2,4,4,5,5-hexamethyl-1,3-dioxolane (HMD) and fluoroethylene carbonate (FEC) cosolvent was designed. The high electron-donating effect and steric hindrance of -(CH3)2 in HMD endow the HMD-based electrolyte with high ionic conductivity but lower coordination numbers with Li+, and an anion-dominated solvation structure was formed. Such configuration can accelerate the desolvation process and induce the forming of a LiF-rich SEI film on the anode, avoiding the solvent coembedding into graphite and enhancing the ion migration rate under low temperatures. The assembled Li||graphite cell with the tame electrolyte outperformed the conventional carbonates-based cell, showing 93.8% capacity retention after 227 cycles for the DF-based cell compared to 64.7% after 150 cycles. It also exhibited a prolonged cycle life for 200 rounds with 81% capacity retention under -20 °C. Therefore, this work offers a valuable thought for solvent design and provides approaches to electrolyte design for low-temperature LIBs.

17.
Nat Plants ; 10(4): 633-644, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38570642

RESUMO

Plant high-affinity K+ transporters (HKTs) play a pivotal role in maintaining the balance of Na+ and K+ ions in plants, thereby influencing plant growth under K+-depleted conditions and enhancing tolerance to salinity stress. Here we report the cryo-electron microscopy structures of Oryza sativa HKT2;1 and HKT2;2/1 at overall resolutions of 2.5 Å and 2.3 Å, respectively. Both transporters adopt a dimeric assembly, with each protomer enclosing an ion permeation pathway. Comparison between the selectivity filters of the two transporters reveals the critical roles of Ser88/Gly88 and Val243/Gly243 in determining ion selectivity. A constriction site along the ion permeation pathway is identified, consisting of Glu114, Asn273, Pro392, Pro393, Arg525, Lys517 and the carboxy-terminal Trp530 from the neighbouring protomer. The linker between domains II and III adopts a stable loop structure oriented towards the constriction site, potentially participating in the gating process. Electrophysiological recordings, yeast complementation assays and molecular dynamics simulations corroborate the functional importance of these structural features. Our findings provide crucial insights into the ion selectivity and transport mechanisms of plant HKTs, offering valuable structural templates for developing new salinity-tolerant cultivars and strategies to increase crop yields.

18.
Phytomedicine ; 129: 155548, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38583347

RESUMO

BACKGROUND: Oral leukoplakia (OLK), characterized by abnormal epithelial hyperplasia, is the most common precancerous oral mucosa lesion and is closely related to oxidative stress. Cucurbitacin B (CuB), a tetracyclic triterpenoid molecule derived from plants, has shown promising anti-proliferative and antioxidant effects in preclinical studies. However, whether CuB can play an antiproliferative role in OLK by regulating oxidative stress remains elusive. PURPOSE: To investigate the role of CuB in inhibiting the malignant progression of oral leukoplakia and to further explore its underlying mechanisms of action. METHODS: In vitro, the effect of CuB on the proliferation, migration, apoptosis, and cell cycle of OLK cells DOK was detected. The core genes and key pathways of OLK and CuB were analyzed in the transcriptome database, by using immunofluorescence, qRT-PCR, and Western blot to evaluate the expression levels of the ferroptosis markers ROS, GSH, MDA, Fe2+, and marker genes SLC7A11, GPX4, and FTH1. Immunohistochemistry of human tissue was performed to investigate the expression of the SLC7A11. In vivo, the model of OLK was established in C57BL/6 mice and the biosafety of CuB treatment for OLK was further evaluated. RESULTS: CuB substantially suppressed the proliferation of DOK cells. Bioinformatics analysis showed that the core targets of OLK crossing with CuB include SLC7A11 and that the essential pathways involve ROS and ferroptosis. In vitro experiments indicated that CuB might promote ferroptosis by down-regulating the expression of SLC7A11. We observed a gradual increase in SLC7A11 expression levels during the progression from normal oral mucosa to oral leukoplakia with varying degrees of epithelial dysplasia. In vivo experiments demonstrated that CuB inhibited the malignant progression of OLK by promoting ferroptosis in OLK mice and exhibited a certain level of biosafety. CONCLUSION: This study demonstrated for the first time that CuB could effectively inhibit the malignant progression of OLK by inducing ferroptosis via activating the SLC7A11/ mitochondrial oxidative stress pathway. These findings indicate that CuB could serve as the lead compound for the future development of anti-oral leukoplakia drugs.

19.
Sheng Wu Gong Cheng Xue Bao ; 40(4): 1089-1101, 2024 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-38658151

RESUMO

Vitamin C plays an important role in plant antioxidation, photosynthesis, growth and development, and metabolism. In this study, a gene AhPMM, which is involved in vitamin C synthesis and responds significantly to low temperature, NaCl, polyethylene glycol (PEG) and abscisic acid (ABA) treatments, was cloned from peanut. An AhPMM overexpression vector was constructed, and transferred to a peanut variety Junanxiaohong using the pollen tube injection method. PCR test on the T3 generation transgenic peanut plants showed a transgenics positive rate of 42.3%. HPLC was used to determine the content of reducing vitamin C (AsA) and total vitamin C in the leaves of transgenic plants. The results showed that the content of AsA in some lines increased significantly, up to 1.90 times higher than that of the control, and the total vitamin content increased by up to 1.63 times compared to that of the control. NaCl and ABA tolerance tests were carried out on transgenic seeds. The results showed that the salt tolerance of transgenic seeds was significantly enhanced and the sensitivity to ABA was weakened compared to that of the non-transgenic control. Moreover, the salt tolerance of the transgenic plants was also significantly enhanced compared to that of the non-transgenic control. The above results showed that AhPMM gene not only increased the vitamin C content of peanut, but also increased the salt tolerance of transgenic peanut seeds and plants. This study may provide a genetic source for the molecular breeding of peanut for enhanced salt tolerance.


Assuntos
Ácido Abscísico , Arachis , Ácido Ascórbico , Plantas Geneticamente Modificadas , Estresse Fisiológico , Arachis/genética , Arachis/metabolismo , Ácido Ascórbico/biossíntese , Ácido Ascórbico/metabolismo , Plantas Geneticamente Modificadas/genética , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Tolerância ao Sal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/biossíntese , Cloreto de Sódio/farmacologia
20.
BMC Infect Dis ; 24(1): 333, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509457

RESUMO

BACKGROUND: Anopheles stephensi is native to Southeast Asia and the Arabian Peninsula and has emerged as an effective and invasive malaria vector. Since invasion was reported in Djibouti in 2012, the global invasion range of An. stephensi has been expanding, and its high adaptability to the environment and the ongoing development of drug resistance have created new challenges for malaria control. Climate change is an important factor affecting the distribution and transfer of species, and understanding the distribution of An. stephensi is an important part of malaria control measures, including vector control. METHODS: In this study, we collected existing distribution data for An. stephensi, and based on the SSP1-2.6 future climate data, we used the Biomod2 package in R Studio through the use of multiple different model methods such as maximum entropy models (MAXENT) and random forest (RF) in this study to map the predicted global An. stephensi climatically suitable areas. RESULTS: According to the predictions of this study, some areas where there are no current records of An. stephensi, showed significant areas of climatically suitable for An. stephensi. In addition, the global climatically suitability areas for An. stephensi are expanding with global climate change, with some areas changing from unsuitable to suitable, suggesting a greater risk of invasion of An. stephensi in these areas, with the attendant possibility of a resurgence of malaria, as has been the case in Djibouti. CONCLUSIONS: This study provides evidence for the possible invasion and expansion of An. stephensi and serves as a reference for the optimization of targeted monitoring and control strategies for this malaria vector in potential invasion risk areas.


Assuntos
Anopheles , Malária , Humanos , Animais , Malária/epidemiologia , Malária/prevenção & controle , Mosquitos Vetores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...